나의 별점
책장에 담기
게시물 작성
문장 남기기
분량
두꺼운 책
출간일
2021.1.26
페이지
624쪽
상세 정보
머신러닝의 기본적인 사용 방법뿐만 아니라 통계학, 선형대수, 최적화 이론 등 머신러닝에 필요한 배경 이론까지 다룬다. 머신러닝 알고리즘을 소개하는 것에 그치지 않고 이론적으로 이해가 필요한 부분은 수학 수식을 통해 자세히 설명함으로써, 해당 머신러닝 알고리즘의 작동 방식을 파악할 수 있다.
프로그래밍 실습은 머신러닝 파트에서는 사이킷런 라이브러리를, 딥러닝 파트에서는 텐서플로 라이브러리를 사용한다. 각 코드의 라인별 부가 설명을 통해 해당 코드의 역할을 이해할 수 있으며, 각 장 마지막의 전체 코드로 전체 흐름 또한 파악할 수 있다.
추천 게시물
700
@yongyong22
나는 가끔 나의 안부를 묻곤 해
가장 먼저 좋아요를 눌러보세요
700
@yongyong22
가장 먼저 좋아요를 눌러보세요
홍유일
@4kko25rfvr6v
다섯째 아이
가장 먼저 좋아요를 눌러보세요
이런 모임은 어때요?
정모/행사 고양이책 읽기
5월 1일 (목) 오전 12:00 · 무료 · 3 /3명
2025년 상반기 독서 챌린지(경기도청 북부청사)
무료 · 90 /제한 없음
📚 독서 연습실
무료 · 12 /제한 없음
폭주하는 독서기니방
무료 · 7 /500명
정모/행사 [100일] 플라이북 리딩 챌린지 📚
5월 19일 (월) 오전 12:00 · 무료 · 12 /제한 없음
민키네
무료 · 3 /10명
정모/행사 주말 독서 챌린지
5월 12일 (월) 오전 12:00 · 무료 · 5 /5명
정모/행사 안중고
5월 12일 (월) 오전 12:00 · 무료 · 1 /500명
정모/행사 아침독서챌린지 테스트(도서부용)
5월 7일 (수) 오전 12:00 · 무료 · 23 /23명
소소서가 : 하루 10쪽 책읽기
무료 · 706 /제한 없음
상세정보
머신러닝의 기본적인 사용 방법뿐만 아니라 통계학, 선형대수, 최적화 이론 등 머신러닝에 필요한 배경 이론까지 다룬다. 머신러닝 알고리즘을 소개하는 것에 그치지 않고 이론적으로 이해가 필요한 부분은 수학 수식을 통해 자세히 설명함으로써, 해당 머신러닝 알고리즘의 작동 방식을 파악할 수 있다.
프로그래밍 실습은 머신러닝 파트에서는 사이킷런 라이브러리를, 딥러닝 파트에서는 텐서플로 라이브러리를 사용한다. 각 코드의 라인별 부가 설명을 통해 해당 코드의 역할을 이해할 수 있으며, 각 장 마지막의 전체 코드로 전체 흐름 또한 파악할 수 있다.
출판사 책 소개
머신러닝에 필요한 선형대수, 통계학, 최적화 이론부터
파이썬, 사이킷런, 텐서플로를 활용한 실습까지
『선형대수와 통계학으로 배우는 머신러닝 with 파이썬』은 머신러닝의 기본적인 사용 방법뿐만 아니라 통계학, 선형대수, 최적화 이론 등 머신러닝에 필요한 배경 이론까지 다룬다. 머신러닝 알고리즘을 소개하는 것에 그치지 않고 이론적으로 이해가 필요한 부분은 수학 수식을 통해 자세히 설명함으로써, 해당 머신러닝 알고리즘의 작동 방식을 파악할 수 있다.
프로그래밍 실습은 머신러닝 파트에서는 사이킷런 라이브러리를, 딥러닝 파트에서는 텐서플로 라이브러리를 사용한다. 각 코드의 라인별 부가 설명을 통해 해당 코드의 역할을 이해할 수 있으며, 각 장 마지막의 전체 코드로 전체 흐름 또한 파악할 수 있다.
머신러닝의 배경 이론 이해를 바탕으로 실습하는 이 책을 통해, 머신러닝 기본기를 다지는 것을 넘어 자신의 분야에 응용할 수 있을 것이다.
이 책의 특징
- 머신러닝 수학 수식 전개 과정을 상세히 표현한다.
- 머신러닝 알고리즘 개념을 쉬운 그림으로 알기 쉽게 설명한다.
- 복잡한 수학 수식과 프로그래밍 코드를 자세하게 설명한다.
머신러닝과 필연적 관계인 '수학'
수식이 어려운 당신에게 꼭 필요한 책!
머신러닝을 이해하기 위해서는 머신러닝을 근본적으로 떠받치고 있는 선형대수와 통계학, 최적화 개념에서부터 출발해야 한다. 『선형대수와 통계학으로 배우는 머신러닝 with 파이썬』은 이러한 개념을 다룰 때 수식 표현을 사용하고 코드보다 수학적인 지식을 먼저 서술함으로써, 머신러닝 알고리즘마다 원리를 이해하는 것을 목적으로 한다. 또한 '책에 쓰인 수학 기호'를 정리한 표를 통해 수식 이해에 어려움을 느끼는 독자의 진입 장벽을 낮추었다. 따라서 선형대수나 통계학에 대한 지식이 부족한 분들도 수학적 원리를 이해하며 기초를 탄탄히 쌓기에 큰 도움이 될 것이다.
소스 코드 다운로드
https://github.com/bjpublic/MachineLearning
베타리더의 한 마디
내가 공부할 때도 이런 책이 있었으면 그렇게 헤매지 않았을 텐데! 이 책을 통해 데이터 과학이라는 이름 아래에 모인 여러 학문에서 나온 지식의 연관성을 구체적으로 알 수 있습니다. _김민성 님
머신러닝을 공부하고 싶었지만, 수학적 기초 때문에 망설였던 분들이나 알고리즘에 사용되는 상세한 내용이 궁금한 분들에게 큰 도움이 될 것입니다. _류회성 님
책을 읽으면서 5년만 젊었으면 좋겠다는 생각이 들었습니다. 5년간의 박사과정에서 필요했던 지식이 모두 담겨 있습니다. 어색한 번역 투의 글이 아닌 한국어책이 나온 건 생명정보학 전공자로서 매우 기쁜 일입니다. _오세진 님
이 책을 읽으면서 인공지능의 기본이 되는 수학과 통계학에 무지한 상태로 학습을 이어 갔었다는 자기반성을 하게 되었습니다. 수학적인 원리 이해에 어려움을 겪고 있는 많은 분에게 필요한 책입니다. _이진 님
이 책은 자신의 전문 분야에 대한 연구 또는 업무 능력을 한 단계 높여 줄 것입니다. 머신러닝이 익숙하지 않은 분도 통계학을 통해 머신러닝을 더욱 잘 이해하는 계기가 될 것입니다. _이현훈 님
현재 25만명이 게시글을
작성하고 있어요